当前位置:主页 > 心情文案 >

罗素悖论关注的对象-集合82句

2024-08-17 05:49心情文案59

罗素悖论关注的对象

1、设Pn为有理数。则P(n+1)为Pn+m/10^(n+1)的形式,为两个有理数相加,所以P(n+1)为有理数;

2、事实上,由于产生希尔伯特曲线的过程是递归过程,而递归过程与自然数是一一对应的,在理论上这个过程产生的图形与中位线之间的交点只能是可数无穷多,而不可能是不可数无穷多[3]。

3、称为一个基本序列,如果对任何有理数值e,都存在一个整数N,使得对任何n>N和任何m,有

4、在定义中,无理数代表的基本序列中的元素都是有理数,显然按定义无理数作为极限点不在无穷序列里。可以用归纳法证明,无理数作为极限点不在基本序列里有数学依据,而不是出于人为的定义。例如,对于pi的序列:

5、巴赫的悖论:如果一个判断是真实的,那么它是否可以被证明是真实的?

6、下面将讨论希尔伯特曲线等一维到二维映射的曲线。因为一维与二维之间的关系,与可数无穷多与不可数无穷多的关系类似;或者说可以通过作截线的方法,把一维与二维之间的关系转化为可数无穷多与不可数无穷多的关系,所以在进一步讨论前先总结一下可数无穷多与不可数无穷多的关系:

7、010.020.030.040.050.060.070.080.09

8、10.20.30.40.50.60.70.80.9

9、年,数学家康托提出了从一维到二维的映射,后来这个结论得到了另外一些数学家的支持,包括皮亚诺、希尔伯特等。但也有一些数学家对此持怀疑或反对的态度。最著名的就是与康托一起对实数做出定义的数学家戴德金,他对康托的结论一直持反对意见,并指出了康托最初证明中的一些错误。另外,后来戴德金又证明,如果平面和直线之间的对应是连续的,则不可能是一一对应。

10、命题的逆向悖论:命题的悖论是悖论的一种,它指出一个命题在任意时刻都是正确的。

11、分析这种编码方法,实际上也是用收敛的点序列来定义一个点,例如正方形的中心点,是由序列{H-1(1/2),H-2(1/2),...,H-N(1/2),...}来定义的,也就是正方形中心点对应在[0,1]中的为1/2。按照第一节的论证,这种方法在定义基本序列中的点时要发生错误。如果严格按极限的定义,上面序列中的所有元素,H-1(1/2),H-2(1/2),...,H-N(1/2),...,这些点都是常数序列(即它自己一个元素组成的序列)的极限点,也都该对应于[0,1]中的为1/2。这就是说,1/2在平面中对应的不是一个点,而是有无穷多个点。

12、伊壁鸠鲁的悖论:如果神存在,那么他要么无法消除邪恶,要么不愿意消除邪恶,要么就不是全知全能。

13、......

14、谬误的悖论:当你说一句话,然后否定它,那么这个说法是正确的还是错误的?

15、对实数域的任一有理数a,a按定义等于一序列;

16、贝利的悖论:如果一个人声称自己在撒谎,那么他是在说真话还是在撒谎呢?

17、这样就完成了从y到(x1,x2)的映射。

18、荷马悖论:如果一头毛发被连续地剃光,那么最后是否仍然是一头毛发?

19、罗素悖论现在已经得到了“解决”。解决罗素悖论的努力直接导致现代数理逻辑的奠基工作,哥德尔不完备定理。

20、下面在坐标系中进一步讨论这个问题。为了方便在十进制中讨论,假设每个大正方形分裂成100个小正方形,即每个正方形分裂后与其中位线产生9个交点。把第一次分裂得到的交点记为s1,把第二次分裂得到的交点记为s2……这就得到了一个序列{s1,s2,...,sn,...},序列中任一元素sn又为一个数的序列:

21、令m表示0到9的整数,把序列中的一个小数表示成其前一个小数与尾数相加的形式(如3.14=3.1+0.04),则:

22、答哲学十大著名悖论包括:

23、这节论述了希尔伯特曲线没有覆盖整个平面。这个问题的焦点在于定义无理数的基本序列有没有包括极限点:如果包括了极限点,那么构造了基本序列就等于所有有理数和无理数;如果不包含极限点,那么构造了基本序列等于只构造了有理数。上节论述了希尔伯特曲线没有覆盖整个平面。那么能不能仿照康托从有理数集出发去定义无理数集的例子,借助希尔伯特曲线来建立一种从曲线到平面的一一映射呢?希尔伯特曲线中的编码映射就是这样的一个例子。

24、另外,可以用反证法证明,希尔伯特曲线并没有建立一种从曲线到平面的一一对应关系。假设曲线的坐标区间为[0,1](即假设曲线的长度为1),并对于正方形中位线y轴上的某一点p,有曲线上的数x属于[0,1]映射到p点。由于希尔伯特曲线是左右对称的,则立即可以得到数(1-x)也映射到p点。又由于这种映射是一一映射,所以有x=1-x=1/2,即与1/2对应的是y轴上的一条线段,这与前面的一一对应假设矛盾。

25、(3)所以序列中任意元素为有理数。归纳法证明的是这个无穷序列中所有元素的性质,所以这个序列的极限点作为一个无理数不在序列里。

26、可数无穷多和不可数无穷多之间不能建立一种一一对应的关系;

27、对希尔伯特曲线,取极限后得到的图形是一个完整的正方形。由于对集合取极限操作的过程不能保持一一对应关系,所以这并不足以证明希尔伯特曲线建立了一种从曲线到平面的一一映射。在取极限前,希尔伯特曲线与中位线的交点包含了[0,1]中所有有理数,这时候希尔伯特曲线完成的是构造基本序列的过程,图形是曲线但不是一个平面;取极限后,图形将覆盖整个平面,这时中位线与图形的交点是整条线段。因为我们知道在取极限前,图形与中位线的交点是可数无穷多个,取极限后交点是不可数无穷多个,这两者之间并不能够建立一一对应关系,所以除非有特别的论证,否则不能从取极限前是曲线而取极限后是平面就得出曲线和平面有一一对应的关系。

28、0110.0120.0130.0140.0150.0160.0170.0180.019

29、如果希尔伯特曲线和中位线的交点覆盖了整条中位线的话,那么序列{s1,s2,...,sn,...}也就覆盖了实数区间[0,1]。又由于序列中的每个元素sn包含有限个数,所以把每个元素代表的数序列代入后,序列{s1,s2,...,sn,...}就等于一个[0,1]区间中所有的实数组成的一个序列。这和实数的不可数性是矛盾的。

30、假设y为一个实数,且:

罗素悖论关注的对象

31、奥古斯丁的悖论:上帝既全能又善良,但存在邪恶。

32、9910.9920.9930.9940.9950.9960.9970.9980.999

33、常数序列显然是一个基本序列,并恰好以a为极限。

34、书目悖论与理发师悖论基本一致。可以说是罗素悖论的另一种通俗表达形式。

35、此外还有康托尔悖论、布拉利—福尔蒂悖论。这些悖论特别是罗素悖论,在当时的数学界与逻辑界内引起了极大震动。触发了数学的第三次危机。悖论让我们先了解下什么是悖论。悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”。这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。悖论是自相矛盾的命题。即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出这个命题成立如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。悖论有三种主要形式。1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。罗素悖论定义:M:所有包含集合自身的集合;N:所有不包含集合自身的集合;问:N∈M还是∈N。如果N∈M,说明N具备M的特征,根据M的定义,N包含集合自身,但这和N的定义矛盾;如果N∈N,说明N具备包含自己的特征,这与N的定义矛盾;但M+N遍历所有集合域,所以N也不是空集。于是,悖论产生。罗素悖论例子:世界文学名著《唐·吉诃德》中有这样一个故事:唐·吉诃德的仆人桑乔·潘萨跑到一个小岛上,成了这个岛的国王。他颁布了一条奇怪的法律:每一个到达这个岛的人都必须回答一个问题:“你到这里来做什么?”如果回答对了,就允许他在岛上游玩,而如果答错了,就要把他绞死。对于每一个到岛上来的人,或者是尽兴地玩,或者是被吊上绞架。有多少人敢冒死到这岛上去玩呢?一天,有一个胆大包天的人来了,他照例被问了这个问题,而这个人的回答是:“我到这里来是要被绞死的。”请问桑乔·潘萨是让他在岛上玩,还是把他绞死呢?如果应该让他在岛上游玩,那就与他说“要被绞死”的话不相符合,这就是说,他说“要被绞死”是错话。既然他说错了,就应该被处绞刑。但如果桑乔·潘萨要把他绞死呢?这时他说的“要被绞死”就与事实相符,从而就是对的,既然他答对了,就不该被绞死,而应该让他在岛上玩。小岛的国王发现,他的法律无法执行,因为不管怎么执行,都使法律受到破坏。他思索再三,最后让卫兵把他放了,并且宣布这条法律作废。这又是一条悖论。由著名数学家伯特兰·罗素(Russel,1872—1970)提出的悖论与之相似:在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。理发师悖论与罗素悖论是等价的。因为,如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是村里不属于自身的那些集合,并且村里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。影响十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。罗素的这条悖论使集合理论产生了危机。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿付印时,收到了罗素关于这一悖论的信。他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟。他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为它们的基础。到19世纪末,全部数学几乎都建立在集合论的基础之上了。就在这时,集合论中接连出现了一些自相矛盾的结果,特别是1902年罗素提出的理发师故事反映的悖论,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。罗素的悖论发表之后,接着又发现一系列悖论(后来归入所谓语义悖论):1、理查德悖论2、培里悖论3.格瑞林和纳尔逊悖论。解决罗素悖论提出,危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。  以上简单介绍了数学史上由于悖论而导致的三次数学危机与度过,从中我们不难看到悖论在推动数学发展中的巨大作用。有人说:“提出问题就是解决问题的一半”,而悖论提出的正是让数学家无法回避的问题。它对数学家说:“解决我,不然我将吞掉你的体系!”正如希尔伯特在《论无限》一文中所指出的那样:“必须承认,在这些悖论面前,我们目前所处的情况是不能长期忍受下去的。人们试想:在数学这个号称可靠性和真理性的模范里,每一个人所学的、教的和应用的那些概念结构和推理方法竟会导致不合理的结果。如果甚至于数学思考也失灵的话,那么应该到哪里去寻找可靠性和真理性呢?”悖论的出现逼迫数学家投入最大的热情去解决它。而在解决悖论的过程中,各种理论应运而生了:第一次数学危机促成了公理几何与逻辑的诞生;第二次数学危机促成了分析基础理论的完善与集合论的创立;第三次数学危机促成了数理逻辑的发展与一批现代数学的产生。数学由此获得了蓬勃发展,这或许就是数学悖论重要意义之所在吧,而罗素悖论在其中起到了重要的作用。理性不能回答关于其自身的问题,这个问题在康德时期就发现了。逻辑存在无法弥补的漏洞,却是人了解世界的唯一途径。到头来你会发现,不是否定理性就是否定信仰。因为所谓唯心唯物之争都是建立在这样不完备的逻辑体系上的纯粹理性科学。既然理性无法对其自身做出判断,那么选择立场就不能以理性为依据,从而变成一种实质上的迷信。当然如果你坚持要说自己的立场是合乎所谓的科学或实践的,那么其实你既不属于唯物也不属于唯心,本质上只是一种泛经验主义或者泛逻辑主义罢了。当然,这里的逻辑主义当然不是罗素的那个,只是一个形象点的称呼而已。

36、910.920.930.940.950.960.970.980.99

37、无中生有悖论:一个定理可以证明另一个定理,但一个定理不能证明另一个命题。

38、罗素的悖论:一个乡村人告诉你他从未看过电视,你该信任他的话吗?

39、一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。那么它列不列出自己的书名?

40、下面一种观点认为,皮亚诺曲线等是和实数的不可数性相矛盾的。关于康托的集合论,罗素于1901年提出了一个悖论,指出一个包含自己的集合将导致逻辑上的混乱。分析发现,在康托对实数的定义中也包含了罗素悖论。康托对实数的定义是[1]:

41、虽然在康托对实数的定义中,对无理数的定义部分却没有包含类似的悖论。这里仍将认真讨论康托对无理数的定义,因为这个定义常被理解成包含罗素悖论的形式出现,第二节将举出一些包含这种错误的例子。

42、命题悖论和命题悖斯:命题悖是一种悖论,它表明一个命题不可能被证明,因为命题与命题之间的逻辑关系是不可逆的。

43、如果序列是一基本序列,则说它有一个确定的极限,假定用b来表示。于是每个基本序列就有一个确定的符号b与之相联。康托使用“符号”一词来形容b的作用。

44、悖论指在逻辑上可以推导出互相矛盾之结论,但表面上又能自圆其说的命题或理论体系。悖论的出现往往是因为人们对某些概念的理解认识不够深刻正确。悖论的成因极为复杂且深刻,但深入研究有助于数学、逻辑学、语义学、形而上学等等理论学科的发展,因此具有重要意义。其中最经典的悖论包括罗素悖论、说谎者悖论、康托尔悖论等等。

45、110.120.130.140.150.160.170.180.19

46、从集合论的观点来看,由于数的序列对应的是数的集合,而不是数元素本身,即使形如⑴中只有一个元素的序列对应的也应该是一个数的集合。上面对有理数的定义显然构造了一个包含自指的集合:数a等于一个集合,这个集合中有一个元素,就是数a本身。这样的集合包含了罗素悖论[2]。

47、膜拜的悖论:如果全能的神认为人类应当崇拜他,那么他为什么会创造出一些不信仰他的人?

48、对实数域的任一无理数b,b按定义等于一序列{b1,b2,...,bn,...}。

49、这节讨论了无法利用希尔伯特曲线的编码映射来完成从1×1的平面到[0,1]区间的一一映射。康托提出了一个从一维到二维的一一映射[1]:

50、x2=0.b1b2……bn……

51、辩证法的悖论:如果一枚硬币的正反面都是同一个物品,那么这两个物品是相同的还是不同的?

52、这是没有错的。

53、这一节分析了康托对实数的定义,指出在实数域中对有理数的定义包含了罗素悖论。同时指出,按康托的定义,无理数作为基本序列的极限点并不在基本序列中。

54、康托在从包含可数无穷多元素的集合出发,用取极限的方法去定义包含原始集合且自己元素为不可数无穷多的新集合时,在对前者集合的元素的定义包含了罗素悖论。1877年,康托给出了从一维到二维的一一映射。皮亚诺和希尔伯特分别于1890年和1891年给出了一种可以充满整个平面的曲线。

55、有一点需要明确一下,就是无穷序列的构造过程以及对无穷序列取极限的过程的关系。我们已经知道[0,1]区间中有理数有可数无穷多个,可以用一个递归的无穷过程来产生这些有理数;而[0,1]区间中的无理数都是有理数集合的极限点。但有理数集和无理数集显然是不一样的。这就是说,构造有理数集的无穷过程并不包括取极限的过程,不能认为取极限的过程一定包含在无穷过程中。否则,按第一节的论述,对无理数的定义将包含罗素悖论。事实上,许多宣称找到了实数可数证据的例子都是犯了认为无穷过程一定包含取极限过程的错误。

56、过原正方形的中位线作一条数轴,并假设数轴上位于正方形内的区间是[0,1]。然后用递归过程生成希尔伯特曲线,并在递归过程中按产生的先后顺序对希尔伯特曲线和中位线的交点进行编号。这样每个交点都有一个编号。如果希尔伯特曲线覆盖了整个正方形的话,那么交点应该覆盖了整条中位线。因为线段上的点和[0,1]之间的实数有一一对应关系,而标号和自然数集有一一对应关系,所以这就意味着[0,1]之间的实数和自然数的一个一一对应。这和实数的不可数性是相矛盾的。显然问题的焦点是,希尔伯特曲线与中位线的交点是覆盖了整个[0,1]区间,还是只覆盖了[0,1]中的有理数点。

57、年前后,在数学的集合论中出现了三个著名悖论,理发师悖论就是罗素悖论的一种通俗表达方式。

58、0010.0020.0030.0040.0050.0060.0070.0080.009

59、这样,对于平面上坐标为无理数对的点,如(sqrt⑵-1,sqrt⑵-1),既不能被希尔伯特曲线的横边所覆盖,也不能为纵边所覆盖。

60、书目悖论

罗素悖论关注的对象

61、尽管“数”的术语的使用十分自然,但仍有关于由A生成的域B的性质及它们的存在性的哲学问题。康托认为B中的数本身是无意义的,它们只具有一种与序列相联系的客观实在性。显然这种实在性不同于域A中有理数所具有的客观性。一个B中的元素被考虑,仅仅为了某种方便之故,仅仅由于它代表了一个基本序列。

62、y=0.a1b1a2b2……anbn……

63、希尔伯特曲线通过把一个正方形不断大的分成4个小正方形,再把小正方形的中心点连接起来得到的曲线,即希尔伯特曲线。把第一次分裂得到的曲线称为H-1,第二次分裂得到的称为H-2,……;把H-1与y轴的交点(也即H-1的中点)称为H-1(1/2),H-2与y轴的交点称为H-2(1/2)……。由于正方形的边和中位线有一一对应关系,这两种表示方法在一定程度上是相同的。

64、分析上面对实数的定义,每个实数域中的数实际上是一个有理数的序列,所以有:

65、简单悖论:任何命题都是有条件的,并且无法被证明。

66、首先,冯诺依曼提出,全体集合构成的集合,不能是集合论的一个对象、元素。罗素悖论就是因为把全体集合构成的东西当做集合(集合论语言中的元素)来处理。冯诺依曼提出,全体集合构成的东西可以作为类提起,但不能作为集合参与集合论的运算(这中的区别很大,听起来有点玄,有兴趣可以参考数理逻辑基础知识),亦即不能说这个东西属于某个集合。同时有人提出,加入WF公理(不存在无穷集合降链)。这样一来,罗素悖论就“不再存在”。

67、康托希望将有理数域A的算术运算推广到这些新数b构成的域B上,并放弃“符号”一词改用“数”称呼B中的元素。

68、实际上,上面的证明过程使用了递归方法。正如第一节所论述,递归方法所论证的只能是基本序列中的元素,而基本序列的极限点不一定包含在基本序列里。所以这个证明只对有理数有效。这种观点指出,在康托用有理数的基本序列去定义实数中,实数域中的一个有理数a按定义等于序列,这实际上构造了一个包含自指的集合:数a等于一个集合,这个集合中有一个元素,就是数a本身。这样的集合包含了罗素悖论。本文还分析了皮亚诺曲线等一维到二维映射的例子,指出它们实际上也包含了上述悖论。

69、={3.1,3.14,3.141,3.1415,3.14159,3.141592,3.1415926,……}

70、希尔伯特曲线由一个大正方形分成9个小正方形,再不断的把每个小正方形分成更小的正方形得到的边组成的曲线。这实际上是一个递归过程。也可认为希尔伯特曲线是在上面基础上把小正方形的中心点连接起来得到的曲线。这两种表示方法在本节的讨论中并没有区别,在下面的过中位线作截线的过程中可以发现,这两种曲线与截线的交点是一一对应的。

71、{an+m-an}

72、(2)对任意属于自然数的n,设m/10^n为有理数,则m/10^(n+1),亦为两整数相除,所以m/10^(n+1)为有理数;

73、无理数对应的基本序列中包含无穷多个元素,讨论能不能多加一个极限点似乎有点诡辩。但这涉及到有理数域中的四则运算是否封闭,以及对无理数的定义是否包含罗素悖论。而且,由于所有无理数都是有理数集的极限点[3],分清基本序列和极限点的关系可以避免把有理数集当成实数集。

74、“1872年,康托在一篇文章中,用一章的篇幅专门讨论实数问题,特别是无理数问题。他为自己提出了一个目标,在不预先假定无理数存在的条件下,建立一个令人满意的无理数理论。显然,全体的有理数集合为此提供了一个基础。康托用有理数的无穷序列来定义无理数及它们之间的顺序关系。

75、是“罗素悖论”的通俗说法。说的是在很早以前的一个村庄里,只有一个理发师,他规定只替而且一定替不给自己理发的人理发。这就引出一个问题:他该不该给自己理发?或者问:他的头发应由谁理?

76、x1=0.a1a2……an……

77、赫拉克利特的悖论:你不能踏进同一条河流两次,因为河流的水已经不同了。

78、定义:无穷序列

79、(2.12)a1,a2,...,an,...

80、在希尔伯特曲线的编码映射中,对分成的4个小正方形按顺时针顺序进行二进制编码,为0.00,0.01,0.10,0.11。后面的分裂同样在前面编码的基础上加上2位二进制小数,如第一格第二次分裂后,得到的4个小正方形编码为0.0000,0.0001,0.0010,0.0011。这样就给正方形中的每个点一个[0,1]中的编码,也就是完成了从1×1的平面到[0,1]区间的一一映射。

81、(1)P1=3.1,为一个有理数;同时10^1为整数,而m/10^1为两个整数相除的形式,按有理数的定义两个整数相除商为一个有理数;

82、向左转|向右转

标签:
返回列表

上一篇:日本六大经典爱情名句-集合33句

下一篇:没有了

“罗素悖论关注的对象-集合82句” 的相关文章

罗素悖论 解决-摘抄38句

罗素悖论 解决-摘抄38句

罗素悖论 解决 1、把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成...