历史上著名的数学小故事76句
历史上著名的数学小故事
1、理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。
2、计山眨着眼想了半天,说:“我算出来了,你的壶中原来一共有7/8斗酒。”
3、李汝珍,清代人,是个“学无所不窥”的才子,可能是学问钻研多了,所以官场上却甚不得意。他写了好几本书,《镜花缘》是流传最广的一本。此书中描写了一位精通算学的才女“矶花仙子”名叫米兰芬。
4、一天,陈老师带孩子们去做一个关于数学趣题的活动,孩子们把四元数不断的拼出新的方式,让他们可以学习数学技巧和经验。
5、一天,老师带小朋友去参观了一个高科技公司,孩子们一边参观,一边听讲了数学概念,参观结束以后,学生对数学又有了新的理解。
6、数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
7、年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。
8、有一天,国王把这位高僧召到宫里,要与他对弈。
9、年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。
10、悖论的产生---第三次数学危机
11、高僧说:“陛下可不后悔。”
12、阿基米德:叙拉古的亥厄洛国王委托金匠造一顶纯金的皇冠,怀疑里面掺了银子,请阿基米德鉴定。虽然重量相同,但因体积不同,排去的水也不相等。根据这一道理,可以判断皇冠是否掺假。
13、一天,学生去球场玩比赛,张老师跟他们讲授了数学概念,帮助他们计算分数,祝贺每个孩子的竞技精神。
14、于是两人就下起棋来,结果高僧赢了30盘,你猜国王应该给高僧多少米?”
15、唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗?
16、米兰芬算灯
17、大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。
18、沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个数,数到最后还剩1个。你算算,我们每人摘了多少个?
19、从前,一个国王经常给身边的大臣出难题来取乐,如果大臣答对了,他将用小恩小惠给点赏赐。如果答不出来,那将受罚,甚至被砍头。
20、国王一听哈哈大笑,说:“这还不容易,我国库里有的是米,这点米连九牛一毛也没有。”
21、国王说:“一言为定。”
22、一天,学生Tom考完数学试回家,做完家庭作业以后,父亲鼓励他继续复习,他可以获得更好的成绩。
23、秦勒斯来到金字塔前,阳光把他的影子投在地面上。
24、直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。
25、高僧说:“既然陛下恩准,我就斗胆与陛下下上几盘。不过如果我赢了你,我只有一个小小的要求。”
26、高僧说:“我的要求很简单,这棋盘上不是有64个格吗?我赢你一盘,你在第一个格给我一粒米,赢两盘,第二个格里给我两粒米,赢三盘,给我四粒米,四盘给我八粒米……每一盘都比前一盘多一倍,直到这第六十四格。”
27、导致了数学史上的第二次数学危机。
28、无理数的发现---第一次数学危机
29、承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。
30、高斯:数学家高斯在高中时,老师都会给他一两个比较难的题目让他去练,但他基本上都能很快解决,一天给了一个题,他用了一个晚上才做出来,后来到学校一问老师,那是个世界上的数学难题,已经困扰了数学家多年了。
历史上著名的数学小故事
31、数学发展史上的三次危机
32、小朋友,你知道是怎样计算出来的吗?
33、他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
34、第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!
35、所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。
36、这里牛顿做了违反矛盾律的手续---先设x有增量,又令增量为零,也即假设x没有增量。"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。
37、才女们要米兰芬计算,楼上楼下的四种灯各有多少盏?同学们,你能算出来吗?
38、一个星期天,李老师在课堂上教授数学,学生把老师十分欢迎,不断问许多有趣的数学问题。
39、八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
40、其实,国王出的是一道条件不足的问题。在正常的思维模式下是无法找出正确答案的。小男孩正好抓住这一关键。他是这样回答的:“这要看桶有多大:如果桶和池塘一样大,就是一桶水;如果桶只有池塘一半大,就是有两桶水;如果桶是池塘的三分之一大,就是3桶水……”
41、•郑板桥喝酒•
42、华罗庚:小时候华罗庚贫寒,初中未毕业便辍学。他一边帮父店,一边依旧不忘学没有时间,他养成了早起,善于利用零碎时间,善于心算的习惯。没有书,没有纸没有笔,养成了他勤于动手,勤于独立思考的习惯。
43、于是终结了近12年的刻苦钻研。
44、•唐僧师徒摘桃子•
45、清朝书画家郑板桥在山东潍县当县官时,有一年春天,他提着一壶酒在街上边走边饮,又是吟诗,又是画画,正好遇上老朋友计山,计山说:“光你一个人喝酒,也不说请我喝呀?”
46、郑板桥说:“对,你很聪明。”
47、国王说:“刚才我说了,你可以提任何条件,我将满足你的要求。”
48、高僧下棋
49、计山问道:“你一个人喝了多少酒呀?”
50、罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。
51、一天,国王指着宫里的一个池塘问:“谁能说出池子里有多少桶水,我就赏他珠宝。如果说不出来,我就要‘赏’你们每人50大鞭。”大臣们被这突如其来的问题难住了。
52、一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不久,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?
53、•聪明的小男孩•
54、悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个数,数到最后还剩1个。你算算,我们每人摘多少个?
55、小男孩实际上打破了习惯性的思维模式,对具体的问题进行具体的分析,他的头脑多么聪明,多么灵活啊!
56、数学小故事一勒斯(古希腊数学家、天文学家)来到埃及,人们想试探一下他的能力,就问他是否能测量金字塔高度。
57、世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。
58、国王对他说:“听说你棋术十分高超,所以把你请来与我下棋。你不要因为我是国王就不敢赢我,你要拿出真本事来。如果你赢了我,我可以答应你提出的任何条件。”
59、郑板桥说:“请倒是想请,只是你来晚了,我的酒已经喝完了。”
60、正在大臣们心慌意乱之际,走过来一个放牛的小男孩。他问清了事情的缘由之后说:“我愿意见见这位国王。”
历史上著名的数学小故事
61、大臣们把小男孩带到了国王身边。国王见眼前的小男孩又黑又瘦又小,便怀疑说:“这个问题答上来有奖,答不上来可要被砍头的,你知道吗?”在场的人都替这个小男孩捏了一把汗,可小男孩却不慌不忙地回答出国王的问题。国王无奈之下,拿出珠宝奖励给了小男孩。小朋友们,你知道他是怎样回答的吗?
62、米兰芬和众姐妹在宗伯府聚会,来到小鳌山楼上观灯。楼上的灯形状有两种,一种灯是上面3个大球,下面6个小球,一种灯是上面3个大球下面18个小球。楼下的灯也有两种,一种是1个大球和2个小球,一种是1个大球和4个小球。知道楼上有大灯球396个,小灯球1440个,楼下有大灯球360个,小灯球1200个。
63、无穷小是零吗?---第二次数学危机
64、一天,在数学课上,老师提出了一个超级复杂的脑筋急转弯,所有学生都想出了解决方案。
65、《九章算术》最出名的问题应该算是“鸡兔同笼”。这个应该都或多或少听过,小学可能数学奥赛还有考。这个题目有意思的地方很多,一是它这个问题本身就很有槽点。试想一下,为什么会有人闲的把鸡和兔子放在一个笼子里。还有就是此题的解法非常丰富,正规解法可能是列一个二元一次方程,但是学生们也会突发奇想,用各种姿势来把这个题解出来,这就增添了这种题目的探究乐趣。
66、一天,学校举办的校赛中,孩子们通过运用数学概念解决赛题,并且学会了协作分工,最后一起获得了最佳奖励。
67、到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
68、泰勒斯说可以,但有一个条件法老必须在场。
69、世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
70、第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓。
71、板桥“哈哈”一笑,吟出一首诗来:“我有一壶酒,提着街上走,吟诗添一倍,画画喝一斗。三作诗和画,喝光壶中酒。你说我壶中,原有多少酒?”
72、一个星期六早上,戴尔带着一些学生去一个科学博物馆,孩子们可以看到各种数学理论和模型,对数学有更多的感受和理解。
73、在古代印度,一位高僧十分精通棋术,国王正好也喜欢下棋。
74、一天,在数学课上,老师给学生们布置了一个距离问题,孩子们互相配合,不断用数学证明来解答,取得最佳答案。
75、一天,藤原小学的数学老师Dave带领学生去一个博物馆,学生们不断研究着博物馆里的各种对象,发现数学和其他课程的联系。
76、《九章算术》,顾名思义,就是九章,共246题。方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股
- • 历史上著名的数学小故事76句
- • 无私奉献的名言有哪些96句
- • 关于严格要求自己的名人名言汇总72句
- • 诚信演讲稿5分钟【70句精选】
- • 总是造句二年级下册53句
- • 精选乘风破浪造句和意思【52句】
- • 海上钢琴师主角名字优选汇总25句
- • 最伤的承诺网名优选汇总58句
- • 鲁滨逊漂流记好词好句摘抄及好句赏析92句
- • 熊出没中经典人生感悟的句子【优选88句】
- • 以爱祖国为主题的诗歌【269句文案】
- • 断章取义的意思解释和造句-集合59句
- • qq心情签名经典语句-通用26句
- • 描写松的诗句有哪些【优选205句】
- • 备战打仗的名言警句【优选197句】
- • abac式的成语大全汇总29句
- • 倔起的意思【精选59句】
- • 志愿者服务口号大全-73句优选
- • 关于劳动的词语【好句摘抄120句】
- • 有关目标的名言警句【74句文案】